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Abstract. We propose a scheme for preparing the squeezing of an atomic motion and an Einstein-Podolsky-
Rosen state in position and momentum of a pair of distantly separated trapped atoms. The scheme utilizes
the quantum nondemolition measurements with interaction between the cavity field and the motional state
of the trapped atom in cavity QED. By illuminating the atoms with bichromatic light, the interaction
Hamiltonian of the cross-Kerr effect between the cavity and atomic motion is generated to implement
quantum nondemolition measurements.

PACS. 03.67.Hk Quantum communication – 32.80.Lg Mechanical effects of light on atoms, molecules,
and ions – 42.50.-p Quantum optics

1 Introduction

The generation, distribution, and application of continu-
ous variable quantum entanglement are topics of consid-
erable interest at present in the fields of quantum com-
munication and quantum computation. In this context, a
variety of protocols for continuous quantum variables have
been proposed and in some cases already demonstrated ex-
perimentally, including quantum teleportation [1], quan-
tum cryptography [2], quantum dense coding [3], and
quantum information [4]. The preparation of entangled
atomic states is one of the goals of atomic physics and
quantum optics. Various methods have been recently pro-
posed to engineer entanglement between atoms [5,6].

The quantized motional states of atoms or ions in con-
fining potentials offer interesting possibilities for a vari-
ety of applications, such as the preparation and study
of nonclassical states [7] and the storage and manip-
ulation of quantum information [8]. These possibilities
step from the relatively long coherence times that can
be achieved with motional states (due to the absence of
strong damping mechanisms) and the precision with which
transformations between motional states can be controlled
using light-induced transitions. Recently, Parkins et al.
proposed a scheme that enables motional quantum states
to be coupled to propagating light fields via interactions
in cavity quantum electrodynamics (cavity QED) [9]. The
entanglement of the atoms’ motional states is achieved
through the transfer of entanglement from the quantum-
correlated output light fields from a nondegenerate para-
metric amplifier [10]. To this end, more schemes were also
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proposed, one is that “local” entanglement of orthogo-
nal motional modes of a single atom trapped inside an
optical cavity is transformed via propagating light fields
into “nonlocal” entanglement of the motional modes of
distantly separated atoms [11], the other is that the mo-
tional modes of two trapped atom are entangled with a
propagating light field via a cavity-mediated parametric
interaction [12]. Mancini et al. exploited ponderomotive
forces to entangle the motions of different atoms [13].

Quantum nondemolition (QND) measurement on sam-
ples of atoms has been proposed as a means to entangle
atoms in the samples [14]. By QND detection atoms can
be projected into an entangled state by the measurement
and following these proposals experiments have produced
and verified entanglement of large atomic samples [15]. In
the present work, we propose a scheme to preparing the
squeezed and entangled motional state by means of QND
measurement. Two auxiliary lasers, incident through the
sides of the cavities, combine with the cavity fields to drive
Raman transitions between neighboring vibrational levels
of the motion of each atom. The cross-Kerr effective in-
teraction is generated for the QND measurement. In this
way, the need of nondegenerate parametric amplifiers is
eliminated, and all of the desired operations are achieved
using only trapped-atom cavity QED configurations. The
advantage of our scheme is that interaction quadratures of
the cavity field and motional mode may be controllable by
the bichromatic auxiliary lasers. So, the entangled states
of two atomic motion are a bipartite entangled state with
equal strength correlations between quadratures. More-
over, the controlled cross-Kerr interaction may be used
directly for achieving some protocols for quantum com-
munication between atomic motions.
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Fig. 1. Schematic of proposed experimental setup and excita-
tion scheme.

2 Model

The basic setup we use was originally considered by Zeng
and Lin [16] and developed for coupling motion to light
by Parkins and Kimble [9,10]. This setup consists of a
two-level atom confined in a harmonic trap located inside
an optical cavity. The atomic transition of frequency ωA is
coupled to a single mode of the cavity field of frequency ωc

and is also driven by two external (classical) laser field of
frequency ωL1 and ωL2. The physical setup and excitation
scheme are depicted in Figure 1. The cavity is aligned
along the x-axis, while the laser field is incident from a di-
rection along the y-axis (i.e., perpendicular to the x-axis).
The Hamiltonian describing the atom-cavity system, in-
cluding the atomic motion, takes the form (in the frame
rotating at the cavity field of frequency ωc)

H = h
∑

i=x,y,z

vib
†
i bi + h∆σ+σ− + h [Eextσ+ + E∗

extσ−]

+ hg0 sin(κx)
(
a†σ− + σ+a

)
. (1)

Here, Eext = EL1e−(iδL1 t−κy+φL1) + EL2e−(iδL2 t−κy+φL2)

and EL1 , EL2 are the amplitude of laser fields. vx, vy,
and vz are the harmonic oscillation frequencies along
the principal axis of the trap, bi and a are annihila-
tion operators for the quantized atomic motion and cav-
ity field, respectively, σ− = |g〉 〈e| is the atomic lower-
ing operator and ∆ = ωA − ωc, δL1 = ωL1 − ωc and

δL2 = ωL2 − ωc. The single-photon atom-cavity dipole
coupling strength is given by g0 and κ is the wave num-
ber of the cavity field. The choice of sine function, with
x = (h/2mvx)1/2(bx + b†x), being the position operator of
the atom, denotes that the trap is assumed to be centered
at a node of the cavity standing-wave field.

Heisenberg equations of motion are straightforwardly
derived from the above Hamiltonian. Assuming the detun-
ings of the light fields from the atomic transition frequency
to be very large [i.e., ∆ � vj , g0, |EL1 | , |EL2 | , |δL1 | , |δL2 |],
atomic spontaneous emission can be neglected and the in-
ternal atomic dynamics can be adiabatically eliminated.
In the equations of motion, this is done by making the
replacement

σ− � − 1
∆

[Eext + g0 sin(κx)a]. (2)

The corresponding Hamiltonian them takes the form

Ha = h
∑

i=x,y,z

vib
†
ibi +

h |Eext|2
∆

− hg2
0

∆
sin2(κx)a†a

− hg0

∆
sin(kx)

[
Eexta

† + E∗
exta

]
. (3)

The second term shows that the bichromatic external
fields do not drive the y motional sideband due to indepen-
dence on y motion. The forth term describes the coupling
between the cavity field mode and the bichromatic exter-
nal fields. However, the bichromatic external fields can be
not coupled directly to drive the motional sideband 2vx.

The size of the harmonic trap is assumed to be small
compared to the optical wavelength (Lamb-Dicke approx-
imation). This enables the approximations sin(κx) �
ηx(bx + b†x). Given this assumption, it is also possible to
design a configuration for which we can neglect all posi-
tion dependence in the laser field. Therefore, the problem
essentially becomes one-dimensional and we can restrict
our attention to just the x-direction.

To second order in ηx, equations of motion for the op-
erators a and bx are then

.
a = −ka + i

η2
xg2

0

∆

(
bx + b†x

)2
a + i

g0ηxEext

∆

(
bx + b†x

)

+
√

2kain

.

bx = −ivxbx + i
η2

xg2
0

∆

(
bx + b†x

)
a†a − Γbx + ζx

+ i
g0ηx

∆

[
Eexta

† + E∗
exta

]
. (4)

Here, the operator ain obeys the commutation relation
[ain(t), a

†
in(t′)] = δ(t − t′) and describes the quantum

noise input to the cavity field from the external field. The
parameter k is the cavity field decay rate which occurs
through the input-output mirror (we neglect other losses
of cavity, such as losses from absorption, scattering of mir-
rors). The parameter Γ is atomic motion decay rate. ζx de-
scribes the vacuum noise introduced by the atomic motion
decay. We have to remark, however, that the damping and
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heating mechanisms of a trapped atom are not yet well
understood [17] and that different kinds of ion-reservoir
interaction have been proposed [18].

Next, we make the transformation bx = b̃xe−ivxt, and
choose EL1 = EL2 = EL and the detuning between the
cavity and laser fields to be −δL1 = δL2 = vx. The terms
of second order in ηx describe photon-number dependent
phase shift; these will in general be very small and may
be neglected. Assuming that vx � k, |ELg0ηx/∆|, the os-
cillating terms in the resulting equations may be dropped
in a rotating-wave approximation to yield

.
a = −ka + iΩ

(
e−iφL1 b̃x + e−iφL2 b̃†x

)
+
√

2kain

.

b̃x = −Γ b̃x + iΩ
(
a†e−iφL2 + aeiφL1

)
+ ζx (5)

where we have defined Ω = (g0ηxEL)/∆. The quadratures
of the cavity field and motional mode corresponding to
equation (5) are then

.

Xa = −kXa + 2ΩXbx +
√

2kXain
.

Y a = −kYa +
√

2kYain
.

Xbx = −ΓXbx + Xζx

.

Y bx = −ΓYbx − 2ΩYa + Yζx (6)

where Xa = a + a†, Xbx = b̃x + b̃†x, Ya = −i(a − a†),
Ybx = −i(̃bx − b̃†x), and we have set φL1 = φL2 = π/2. The
effective interaction Hamiltonian between the cavity and
motional mode is simply a coupling of the form

Heff = hΩYaXbx . (7)

This is the interaction Hamiltonian of the cross-Kerr ef-
fect [19], which is the main result of this paper. The im-
portant feature of this Hamiltonian is that the amplitude
quadrature Xa of cavity field picks up information about
the amplitude quadrature of the motional mode Xbx , while
the latter is left unchanged.

3 Generation of squeezing and entanglement
of motion

The Hamiltonian of equation (7) is identical to the one
of the off-resonant interaction between the laser field and
the atomic ensemble [14]. The spin squeezing and entan-
glement of two macroscopic atomic samples have been
produced experimentally by the QND measurements with
this Hamiltonian [15]. The protocols of quantum commu-
nication between atomic ensembles have also been pro-
posed, i.e. quantum teleportation, quantum swapping.
Thus, these protocols may be applied easily in motional
state in cavity QED system. The QND schemes produce
conditional squeezed motional states that are dependent
on the measurement result. On the other hand, the uncon-
ditional squeezing may be generated by quantum feed-
back [20]. The results of the QND measurement, which

conditionally squeeze the motion, are used to drive the
system into the desired, deterministic, squeezed motional
state.

First we discuss the scheme of producing the EPR state
between two atoms in the same cavity. Two atoms are lo-
cated at the different nodes of the cavity field. The am-
plitude quadrature of the cavity field output is measured.
The equations of motion for the operators are

.
a = −ka + iΩ

(
e−iφ1

L1 b̃1x + e−iφ1
L2 b̃†1x + e−iφ2

L1 b̃2x

+e−iφ2
L2 b̃†2x

)
+
√

2kain

.

b̃1x = −Γ b̃1x + iΩ
(
a†e−iφ1

L2 + aeiφ1
L1

)
+ ζ1x

.

b̃2x = −Γ b̃2x + iΩ
(
a†e−iφ2

L2 + aeiφ2
L1

)
+ ζ2x. (8)

Here, b̃1x and b̃2x are annihilation operators for the two
quantized atomic motions respectively. φ1

L1
, φ1

L2
and φ2

L1
,

φ2
L2

are the phase of two laser fields of atom 1 and 2,
respectively. Firstly, we set φ1

L1
= φ1

L2
= φ2

L1
= φ2

L2
= π/2

at time t1, then the quadratures of the cavity field and
motional mode are

.

Xa = −kXa + 2Ω(Xb1x + Xb2x) +
√

2kXain

d
dt

(Yb1x + Yb2x) = −Γ (Yb1x + Yb2x) − 4ΩYa + Yζ1x + Yζ2x

(9)

and Ya, (Xb1x +Xb2x), (Xb1x −Xb2x), (Yb1x −Yb2x) are not
changed. In the realistic case k � Ω, we can adiabatically
eliminate the cavity mode a

Xa � 2
Ω

k
(Xb1x + Xb2x) +

√
2
k

Xain . (10)

The experimentally measured quantity is the integration
of the homodyne photon current over the measurement
time T . With equation (10) and the boundary condition
aout = a − ain, the measured observable corresponds to
the operator [21]

XT =
1
T

∫ T

0

(
aout(t) + a†

out(t)
)

dt

=
2
√

2Ω√
k

(Xb1x + Xb2x) +
1√
T

X in
T (11)

where X in
T = aT + a†

T , and aT , satisfying [aT , a†
T ] = 1,

is defined by aT = 1/
√

T
∫ T

0
aout(t)dt. Equation (11) as-

sumes k � Ω and e−kT � 1. There are two different
contributions in equation (11). The first term represents
the signal, which is proportional to Xb1x + Xb2x , and the
second term is the vacuum noise. We get a collective mea-
surement of Xb1x + Xb2x with some vacuum noise Xain

from the cavity field output. After this round of mea-
surements, we set φ1

L1
= φ2

L2
= π and φ1

L2
= φ2

L1
= 0,
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the quadratures are
.

Xa = −kXa + 2Ω(Yb1x − Yb2x) +
√

2kXain

d
dt

(Xb1x − Xb2x) = −Γ (Xb1x − Xb2x) + 4ΩYa

+ Xζ1x − Xζ2x (12)

and Ya, (Xb1x + Xb2x), (Yb1x + Yb2x), (Yb1x − Yb2x) keep
unchanged. In this round, we get the collective measure-
ment of new variables Yb1x − Yb2x . In this way, both the
EPR operators Xb1x +Xb2x and Yb1x −Yb2x are measured,
and the final state of the two atomic motion is collapsed
into a two-mode squeezed state with variance
〈
δ2(Xb1x + Xb2x)

〉
/2 =

〈
δ2(Yb1x − Yb2x)

〉
/2 = e−2r (13)

where the squeezing parameter r is given by

r =
1
2

ln
(
1 + 2η2

)
(14)

where η =
√

8Ω2T/k and the atomic motion decay dur-
ing the measurements is not considered. Thus, using only
coherent light, we generate continuous variable entangle-
ment between two nonlocal atomic motions.

We now consider the two atoms placed in separate cav-
ities, and interacting sequentially with the same light field.
That is, the outgoing field from the first cavity enters the
second one. We assume the same coupling constant, the
same cavity field rate and the same oscillation frequency
for the two atoms. Firstly, we set φ1

L1
= φ1

L2
= φ2

L1
=

φ2
L2

= π/2, then the quadratures of the cavity field and
motional mode of atom 1 are

a � Ω

k
Xb1x +

√
2
k

ain

.

Y b1x = −2

√
2
k

ΩYain − ΓYb1x + Yζ1x (15)

where, we consider adiabatically setting
.
a = 0 when the

cavity field rate k � Ω. The boundary condition reads
a′
in = aout =

√
2ka. Then the quadratures of the output

optical field from cavity 2 and motional mode of atom 2
are

Xa′
out

= 2Ω

√
2
k

(Xb1x + Xb2x) + Xain

.

Y b2x = −2

√
2
k
ΩYain − ΓYb2x + Yζ2x . (16)

We measure the amplitude quadrature of the output op-
tical field from cavity 2 to achieve the information of
Xb1x + Xb2x with the measurement time T . After this
round of measurements, we set φ1

L1
= φ2

L2
= π and

φ1
L2

= φ2
L1

= 0, the quadratures are

Xa′
out

= 2Ω

√
2
k

(Yb1x − Yb2x) + Xain

.

Xb1x = 2

√
2
k

ΩYain − ΓXb1x + Xζ1x

.

Xb2x = −2

√
2
k

ΩYain − ΓXb2x + Xζ2x (17)

and Yain , Yb1x , Yb2xare not changed. In this round, we get
the collective measurement of new variables Yb1x −Yb2x . In
this way, both the EPR operators Xb1x +Xb2x and Yb1x −
Yb2x are measured from the output optical field of cavity 2,
and the final state of the two atomic motion in separate
cavities is collapsed into a two-mode squeezed state with
variance 〈δ2(Xb1x +Xb2x)〉/2 = 〈δ2(Yb1x −Yb2x)〉/2 = e−2r,
where the squeezing parameter r is equal to equation (14).

In the following, we show as an example how to achieve
quantum communication, i.e., quantum teleportation, be-
tween distant atomic motion using only coherent light. We
consider unconditional quantum teleportation of continu-
ous variables [1] from one atomic motion to the other in
separate cavities since we have continuous variable entan-
glement. To achieve quantum teleportation, first two dis-
tant atomic motion 1 and 2 are prepared in a continuously
entangled state using the nonlocal Bell measurement de-
scribed above. Then, a Bell measurement with the same
setup on the two local atom 1 and 3, together with a
straightforward displacement of Xb2x , Yb2x on the atom 2,
will teleport an unknown atomic motion state from atom 3
to 2. The teleportation quality is best described by the
fidelity, which, for a pure input state, is defined as the
overlap of the teleported state and the input state. For
any coherent input state of the atom 3, the teleportation
fidelity is given by

F = 1/

(
1 +

1
1 + 2η2

+
1

2η2

)
· (18)

We now consider briefly the conditions under which the
most significant assumptions required by our model should
be satisfied. These conditions has been examined in some
detail in reference [9]. First, the neglect of terms in the
effective motion-cavity mode interaction Hamiltonians,
which vary like e±2ivxt requires that the trap frequencies
be large in comparison with the cavity decay rate k and
the effective coupling parameter Ω. Second, the Lamb-
Dicke parameter must satisfy ηx � 1. Let us consider a
specific example of the trapped 9Be+ ions. Recent exper-
iments with this ion [7] have been performed with har-
monic oscillation frequency along the principal axis of
the trap vx/2π � 11−30 MHz, corresponding to Lamb-
Dicke parameter ηx � 0.14−0.086. If we assume, for ex-
ample, that the mirrors forming the cavity have radii of
curvature equal to 5 cm and are separated by a distance
l = 1 mm, the g0/(2π) = 5.3 MHz. For a cavity finesse
of 75 000 one obtains k/(2π) = 1 MHz, while a trap fre-
quency of vx/(2π) = 22 MHz (corresponding to a Lamb-
Dicke parameter ηx = 0.1) gives vx/k = 22. We choose
the measuring time T ∼ 8 µs and let Kerr coefficient
Ω/(2π) = 0.1 MHz. A high squeezing r = 1.1 and a fi-
delity for the teleportation F = 0.81 is obtained if there
is no extra noise.

4 Conclusion

In conclusion, we have described a scheme for squeezing
and entangling motional modes via QND measurements in



J. Zhang and K. Peng: Squeezing and entangling atomic motion in cavity QED 93

cavity QED. We have considered two scenarios to entan-
gle the motions of two atoms: atoms in same and in sepa-
rate cavities. This scheme has a advantage of establishing
entanglement and achieving some protocols for quantum
communication between atomic motions only by means of
coherent optical field in cavity QED. The exciting progress
has been made recently in experimental cavity QED with
single trapped atoms [22], which collectively offers great
encouragement to our proposal. Realization of this scheme
would offer the exciting possibility of implementing a vari-
ety of continuous variable quantum computation and com-
munication protocols.
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